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| IMPROVING THE TOOLS OF SYMBOLIC LEARNING
1
¥
: Yves Kodratoff
K Equipe Inférence et Apprentissage
2 Bitiment 490, Laboratoire de Recherche en Informatique
Université Paris-Sud, UA-410 du CNRS,
1 F - 91405 Orsay France
)
b)
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SIS RESUME
Y e
v "
)
N Dans la premiére partie de cet article, nous donnons queiques conséquences du choix d’une définition
de la noton de Généralisation. Nous discutons des relations entre définitions fondées sur la déduction et
§ celles fondées sur 1a substtution.
’ Dans upe seconde partie. oous montrons comment une 2pproche symbolique peut rendre compre, au
N moins partieilement. du bruit présent dans toute donnée réelle. Nous discutons de cette approche pour
T 1'Analyse des Scénes, l'acquisition de regles et de stratégies de contrdle. Finalement, nous présentons
;‘ S notre idée d° Espace des Versions Polymorphique.
\C ~e ot !
T
In its first pare, this paper presants some consequences of the choice of the definition of Generalizarion.
@ It discusses the definitions based on deduction, versus those based on substitution.
‘ In its second part. it shows how symbolic computarions are also able to take into account. at least part-
i ] ) ly, the noise most real-life data show. It discusses symbolic approaches to noise handling in Scene

Analysis, rule learning, strategy leaming and, finally, of the idea of polymorphic Version Space\

I
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INTRODUCTION

In this paper. we shall emphasize two aspects of this part of symbolic Machine Leaming which deals
with leaming from sets of several examples, and the aim of which is "moving from more specific
descriptions to more general descriptions” [Langiey 1986] ( called here generalization ).

Ouge is relative to the practical comsequences of a theoretical puzzle.

Among the important techniques used in ML are techniques of generalization, and specialists in ML
build up systems that attempt to provide descriptors ( i.e., atomic formulas ) that have the best degree
of genenilizaion. For instance, the Version Space [Mitchell 1982] paradigm is a method that helps to
find the exact generalization state in which a descriptor must be used in order to optimize the problem
LR solving esficiency of operators making use of this descriptor.

It is then somewhat surprising to see that Classical Logics do not define the generalizanon state of an
atomic formula. The only existing logical tool is rejative to disjunctive formuias and is called subsump-
ton, while substtution defines the reladve generality of terms ( ie., formal functional expressions that
are oot evaluated ).

We shall attempt to clarify this siroadon, up to the point where some of the practical consequences of
our theoretical choices can be seen. -

In secton 1, we smdy definitdons of the generalization of implicatons and conjunctive formnlas, and
therr differences, we stmdy also the practical consequences of choosing Modus Ponens instead of the

e Generalization Principle as an inference rule. An other, refated, topic of section 1 is the discussion of
the use of the properties of the descriptions ope waats to leam from.

The other aspect is : bow far symbolic methods, as opposed to numeric ones, must be of use ?

In most of the present published works, as soon as some noise or some polymorphy ( ie., when coo-
cepts have intersecting sets of instances ) has to be taken into account, the authors rush upon aumencal
representanions they claim being the oniy way to cope with those problems. We have chosen the oppo-
site approach, which is to stick as far as possible to symbolic representarions. even if it may firt seem
absurdly too far. For instance, we would represent poiymorpby by putting upper and lower bounds to
the properties of concepts. rather thap assigning to 2 given instance so much chances to belong to coe
concept and so much to belong to an other ooe.

Secuon 2 will be devoted to the study of symbolic handling of noise and polymorphry, with. for in-
stance, 2 presentanoa of "Polymorphic Version Spaces” which illustrates weil how seemningly purely
symbolic techniques can be also applied ia a wider context.

Our approach aims at improving the provability of each learmng steps. and we believe that provabulity
is a necessary ( if oot sufficient ) step for explicablity. This last statement is weil illustrated by EBG
[Mitchell & al. 1986] where expiananons are derived from proofs. o our opwnion. this pownt is of much
umportance. this is why we shail come back to it in conclusion.

L. - DIFFERENT DEFINTTIONS OF GENERALIZATION

1.1 - Intuitive Definition of Generalizatioa

There exusts one defimnion which is agreed upon by all autbors. the most intwitive one. We give it
under a sumplified form where the formulas depend oa one vanable only. When there are several van-
J
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ables, one has to take into account the fact that each variable is relarive to a fiven object. Object
oriented generalization is a rather new topic {Manago 1986], we will not go into it because we would
like to suck to weil-known concepts in this section.

Let P(x) and Q(y) be two formuias.

Let us aote by {Prag} the set of the instances of x such that P(x) = TRUE, and similarly for Q.
{Prage} = ( x / P(x) = TRUE}
{@mue} = { y/ Uy) = TRUE}

This defimtion is the one actually used when one wants to show wat, say, P(x) is oot more geperal

than Q(y). In thar case it is enough to exhibit an instance of x such that P(x) is FALSE and Q(y) is
TRUE.

Cowin The problem, bowever, is to be able to compute a geueralization from its instances, and the above
definidon gives no way to achieve tus goal. This is why alternare defimtions, leading to a generaliza-
tion algorithm, have been developed.

12 - Vere ’s definition of generalization

Let us first consider a conjunction of descriptors. A formula has therefore the form
A’A\&.-&A.
where each 4; is a descriptor.
. Let (A} be called the set associated to A, defined by
SN (A} = {Ay s A4}
Then A is more general than B iff there is

- an expression B8’ such that (B'} ¢ {8}
- a substrution ¢ such that s A = 8°.
Otherwise stated. GA is equal to a subpart of 8. up to a vanable renaming.

For disjunctions of conjunctions, this definition becomes : Let G, = ¢, V . V oee Gy 3 81 ¥V = V
Zwm then G, is more general than G, iff Vj i such that g, is more geoeral than g,.

The main drawback of this defimition is that it gives 0o coatrol on the way conjuncts are dropped dur-
- : ing the generalization process.

1.3 - Existential versus Universal quantification

The state of quandfication of the variables introduced during the generalization process depends on
I - the torm of the expressions given as example
- the use of the geoeralized expression.

The form of the expressions given as example depends very much on the way the informadoa is
represented.

Consider the English sentence "That particular crow. named Jack. is black"
It can be interpreted either as an implicanon. or as a conmjuncnon. Dispuning on which is the best
would be sutside of the scope of this paper.

N (1%
.s;.‘. V‘f" Ry "..FV \-fg‘w ~" g \"\I‘ " '\ “~u _\-. . e ' ) ( -‘.\ - - 3 o L . .,'-‘.»‘, DRIRy , '. _p_' "J' .\J'"J'\(.‘f L f\f‘F r.‘rf.\'r "
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In the first case, its first order logic representation will be :
CROW(JACK) =» BLACK(JACK),
in the second case. it will be :
CROW(JACK) & BLACK(JACK).

When one is learning from implications ( or, more genenally, from theorems ) the intuitive b
behaviour consists in introducing umiversally quantified vanables [Plodin 1970).

From :he imowledge

CROW(JACK) = BLACK(JACK) t

CROW(JOCK) = BLACK(JOCK). ¢

one is tempted to infer :
VYx [CROW(x) = BLACK(x)]

because it gives a good represenwation of the sentence "All crows are black”.

When one is learning from conjunctions, it is counter-intuitive to inwoduce universal quantfiers. .

From the lnowledge '
CROW(JACK) & BLACK(JACK)
CROW(JOCK) & BLACK(JOCK),
one is not tempted to infer
Yx [CROW(x) & BLACK(x)) N
because it represents the sentence "All objects are black crows™ which is nowhere in the examples. '
Even more convincingly, one cannot learn that
Yx¥y (BLACK(x) & WHITE!(y)] t
from
BLACK(CROW) & WHITE(SWAN) =
BLACK(JAY) & WHITE(DOVE) d
since the examples comain no contradicrion while Nx¥y [BLACK(x) & WHITE(y)] does.

Nevertheless. it may seem a bit awckward w “infer" from them
Ax3y (BLACK(x) & WHITE(y)] Q
since this existential theorem is nothing bur a mere logical deduction from either example. :

Suppose that you start from a reiation R(A, B) amoog instances. [t i3 trivial 10 understand that. most
often, the relation ¥xVYy [R(x. v)] is wrong. One has to find a relatnon of the type
Y ¥y (P(x) & Q(y) =» R(x. y)] -
where P and Q describe those variables for which R is TRUE., but in general, one has no way to find P
and Q.
That explains why some authors define
P(A) generalizes wto 3x P(x) iff 3x [P(A) = P(x)]

(-

»

Since this implicaton is a tautology. this definition i3 also very much disputabie. The idea of gegerali-
zagon coaveys some wcrease in the information content of the generalized formula. Here, on the con-
trary, gepenilizadon would take piace. and seemingly decrease the information conmtent of the general-
ized formula. This last point will be detaled in secdon 1.3.2.3 below.

Let us now see how these problems are handled in each paracular case.
1.3.1 - Theorem Learning
When one is learming from example theorems. one will introduce umiversally quantified variables. Thig !

gives rise to two different difficulties. Bow of them are extremely deep problems and their answer be-
long to long term research. Nevertheless, we shall now descnbe them bredly. :

R T S T A TR DR TAWL
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Firstly, there exist indeed theorems that contain existennal quanufiers, and the recogmtion of this ex-
istential quantifier is very difficuit problem which amounts to function syuthesis.

Secoadly, the examples usually do not specify what is the domain of validity of the theorem ( i.e., one
learns ysually false theorems from exampies ) and the determination of this domain amounts to predi-
cate synthesis.

13.1.1 - Inventing Skolem Functions

When some vanables are existentally quanufied. there is aiways a hidden function which will be ex-
tremety difficuit to put iato evidence.

Suppose that one is learning from set of examples like : 0 + | 1,0 +2 =2, .. 1 +0=[, . 1 +1
= 2, etc .., where + is an unknown symbol. It would be wrong to infer formulae all the variables of
which are untversally quantfied like : XYYz [x + y = 3].

Let us now suppose that it has been possible, say by using suitable counter-examples, to guess that one
possible formula is NXNy3z [(x + y = z].

Obviousty, this last theorem, aithough true, does not solve the learning problem implicitly stated by the
above sequence of examples : "invent a definidon of a function + that fits with this set of input-owspus

exampies”.

When a theorem conrains existential quantifiers, the first goal is, of course. t0 recognize which are the
vanables under their scope. In gemeral, as the example shows, this is not the uitimate goal which is
rather : "remove those existentially quantfied varables by synthesizing a suitable skolem function that
fits with the examples”.

Instead of Yx¥y3z [x + y = z], one rather wants w find a function f such that NNy [x + y = fix, y)].
and f realizes the operation +.

Severai methodologies that propose an approach to the solution of this problem can he found in [Bier-
maon & al. 1984). Recenty, an original approach has been developed and impiemented in our group
{Franova 1985, 1986].

1.3.12 - Finding Domain Detinicoas

Let us suppose oow that we are in the simpler case where 2l quantifications are umiversal owes. It
does not mean that the theorem is tue in all possible interpretations : one must aiso find the domain of
defimon of the varables.

Suppose that the system is to learn rules concerning the economic relationships berween countries.

For example, it will be told that :

If France is a buyer of video recorder, and Japan produces them, then France is a potenaal buyer of
video recorder from Japan.

A formal way of representing this sentence is :

E, : NEEDS(FRANCE. VIDEOS) & PRODUCES(JAPAN, VIDEQS) --> POSSBUY(FRANCE. VIDEOS.
JAPAN).

Assume that we also have the second example :
E, . NEEDS(BELGIUM. COMPUTERS) & PRODUCES(USA. COMPUTERS) ->
POSSBUY(BELGIUM, COMPUTERS. USA).

It is then easy to find the following generalization :

E G : NxV¥yYu NEEDS(x. u) & PRODUCES(y, u) ~> POSSBUY/(x. u, ).
¢

9
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This generalization is snll not correct since. for inswnce, it would allow x and u 1o be instantiated by “
the same value. .
-
In this simple case, suppose that the following taxonomies are available : K
COUNTRIES o N
FRANCE  BELGIUM  USA  JAPAN ~ .. y
F
PRODUCER-GOODS A
COMPUTERS VIDEOS 5.
These hierarchies describe the possible domains of the variables. this information can be introduced as !.;
a condition to the application of the rule : oy
Yx¥y¥u [ IF COUNTRY(x) & COUNTRY(y) & PRODUCER-GOODS(u) 'o:
THEN { NEEDS(x, u) & PRODUCES(y, u) --> POSSBUY(x. u. y) } ]. ;
q
A greater refinement is of course possible when information is available, more detailed than the wo i
above taxonomies [Kodratoff 1985], (Kodratoff 1986a]. ;
132 . Coacept Learning or Different Ways to Use a Recognition Function W
&
In this section, let us assume that we do got leam rules or theorems, but conjuncts of atoms. Ne'
This kind of leaming 1ims at obtaining a formula, called recognition function. that characterizes the ‘
micro-world to which the exampies belong. E
R
When quantifiers are introduced, the recognition process will work by using a deduction principle. L
In our example, we shall use refutation and write the recognition as the deduction in a PROLOG pro- ,s_'
gram, and use Edinburgh ootation [Clocksin & Meilish 1981] 'y
Suppose that w - swart from 3
E, : "This scene contains KOKO which is a white swan”, -
E, : "This scene contains KIKI which is a white swan". .:
Fi
These examples are interpreted as a description of some scene "This scene”. :5 ;
They are then given the form : o
E\ : SWANKOKO) & WHITE(KOKO) o
Ey : SWAN(KIKI) & WHITE(KIK]). v
Obviousty, ane aims here at recognizing scenes that contain a white swan. : ]
This example has been chosen on purpose to be opposed to the "black crow” one since ail swans are «
not white. o
"
4
132.1 - Universal quantification X
}
All variables are umiversally quantfied. the recognition “function” has therefore the form : ¥x P(x). }‘
It will be used as 1 recogmtion functioa of a scene, say S,, as defined : Y
Ooe says that .:-
Yx P(x) recognizes S, when one can prove Yx P(x) =» §,. -
N
Using refutation for the proof of Yx P(x) = §, amounts to prove that its oegation leads to a contradic- f'
Hon, i.e. that
Yx P(x) & =5 1 " Q
'.
}
[,
v
i
Y
A
‘-_,

A ) " - " X
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leads to a contradiction.

E\’ and Ey will generalize 10
Yx P(x) = x [SWAN(x) & WHITE(x)]
which will be used to recognize a scene made of a white swan.
Suppose that we want to check that
§y = [SWAN(JACKO) & WHITE(JACKO)]
18 recogrized.
One has to prove that
SWAN(x) :-
WHITE(x) :-
:- SWAN(JACKO), WHITE(JACKO)
leads to a contradiction, which is of course the case.
Therefore, the scene is recognized by this recognition funcrion.

This kind of generalizadon has the property ( in some cases it is a drawback, in some others it may be
an advantage ) that it will fail to recogmze 2 scene with additional details.

Consider a scene with a white swan and a Renault car, one will have to find a contradiction in the set:
SWAN(x) :-
WHITE(x) :- -
- SWAN(JACKO), WHITE(JACKO). CAR(RENAULT)
and this will not be possible.

In conclusion. one must use umiversally quantified variables when one looks for a recognition function
that recognizes whole scenes. Opne must oot use them when the recogmition function is supposed to
recognize sub-parts of a scene.

13.2.2 - Existential quantfication

All variables are existennally quantified. the recognition “function” has therefore the form : 3x P(x).
It will be used as a recognition functon of 1 scane, say ,, as defined :
One says that

3x P(x) recognizes 5; when S|  3x Pix),
ie.. whea ope can dednce 3x P(x) from §,.
Using refutation for the proof of §, - 3x P(x) amounts to prove that deducing the negation of 3x P(x)
from S, leads 0 2 contradiction. i.e. that

Sy & = 3x P(x)

leads to a coatradiction.

E\’ and Ey will generalize to
3x Plx) = 3x [SWAN(x) & WHITE(x)],
therefore one has :
— 3x Plx) = Yx =P(x) = ¥x =~(SWAN(x) & WHITE(x)]

Suppose that we want to check that
Sy = [SWAMJACKO) & WHITE(JACKO)]
is recogmzed.
One has to prove that
SWAN(JACKO) -
WHITE(JACKO) .-
:- SWAN(x), WHITE(x)
leads to a contradiction, which is of course the case.
Therefore, the scene 15 recogmzed by this recogmition function.
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4 1.3.2.3 - Conclusion
h Ly
Existential quantification might have been felt as counter-intuitive because "aothing is leamed™ from it Y,

This is not crue for the following reasons. )

- The existential theorem 3x P(x) learned from a set of examples (£, ..., E,} must be deducible from
each E;. It therefore carches. as it should be, some of the common feamures of the examples. v.
It will recognize 2 scepe by its sub-parts. ‘

Consider again a scene with a white swan and a Renquit car, one will have t0 find now a contradic-
tion in the set :

SWAMJACXO) :-
- WHITE(JACKO) :-

2 S CAR(RENAULT) :- e

;- SWAN(x), WHITE(x) N

and presence of a renauit car is no longer harmfui. R

- This definiticn is acruaily very oear to the inmitive one. In particular, it contains Michalski’s general- ;

’-
ization rules [(Michalski & Stepp 1983], (Michalski 1984). For instance, the example of secton 1.3.2.2 ;
shows how it contains the "dropping coadition” rule. .
i E
- This approach has been used in {Kodratotf 1985] for the specific case of counter-examples. It has e
been generalized by Nicolas [Nicolas 1986a, 1986b] who uses a theorem prover in order to perform in- Sl.
o R ductive leaming, which may seem surprizing at first sight. ;
-
L i We have developed an other way to define generalization, by extending the classical definition of wrm e
b iizte it generalizaton, as seen in the pext section. i
____ e In order 1o prove the necessity of inmroducing these new concepts, let us comsider the following . :: A
o counter-exampie to the methods issued from Modus Poneas, as presented in sections 1.3.1 and 1.3.2. N
1.3.3 - A Counter-example
Let us now give a "counter-exampie” to deductive definition, in that sense that 3 best generalization is F
oot found by it oy
3 r
1.33.1 - A definition of "best yeneralizarion” issued from Modus Pogens g
= e fﬁ-«"i:;l.:‘ - There is an obvious way to define a best generalization when one quantifies existentiaily the varables. :
The best generalization is the one which is the "nearest” to all the exampies. but contains the informa-
ton they have w» common. -
Let [E;} be a set of examples, and (G;} be a set of possible generalizanoas,. ie., i, ope must be able A
to prove that E; - G,, for each of the G, 's. "
Since one infers the generiizations from the examples, it is obvious that one must define the best gen- .
eralization among the G,'s by being the mosy specific one, i.e. tbe one, if it exists. from which all oth- A
A

ers can be interred.

1.33.1 - The counter-exampie

Suppose that one suarts from the two examples
E, . ON(A, B) & NEAR(B, C)
E, : OMD. E)

with the theorems

Vx Yy {ON(x. y) => NEAR(x. v)]
Vx Yy (NEAR(x. vi <= NEARly, )|

ettty . \:".' e ‘:_ e e T >
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0 Using these theorems, one can show that the two following Potential Generalizanons

4 G, : 3x 3y [ON(x. )]

! G, : 3x 3y Iz [ON(x. y) & NEAR(y. z)]

¥ e are equivalent relative 1o our definition. since G, <> G,.

¥ Nevertheless, the associated generalizations obtained by substitution techniques, as seen below, are :

fi - ON(x, )
i fo - ONIx. y) & NEAR(y. z)
0 They are not equivalent since, using the theorems, one can show that f, is equivalent io
K f7 : OMix, y) & NEARty, x).

K)
« fa is clearly ( from definition 1.5.2 below ) more general than f| since the subsnrution ¢ = {x <~ x. y
3 e~y zex}issuch that S f, = f'.
+ - e . 1.4 - Term generalization
4 1.4.1 - Terms
Let V' be a countable set of variables and F a family of functicns indexed by the narural numbers.
. When a funcdon f belongs to F,, one says that the arity of f is o The set F,, of functions of arity zero
g R is called the set of the constants.
- B T At T O
b= The set of terms on V and T. is defined by
. o ' )veV isatem
EI tevemnd n (@) Atveeetn) is 2 term M f € F, and ¢,......£, are terms.
:,, o - [omitvely, the set of erms is a set of expressions buwiit with functions of some amty, coastaats and
J variables.
»
: 1.4.2 - Geperalization

X The term ¢, is more general than the term r, denoted by +, < &, iff there exists a substtution oz,=¢t..
_ This defimtion does cot take into account the properties of the functions. Qne descrbes these proper-
des by a “theory” &, and one defines a geoeralizadon modulo this theory.

1.43 - g . generalization

4 i e -
Let € be a set of axioms which express tbe properties of the funcuons.
'y When one oeeds 10 use these axioms in order to recogmze the 2quality of two terms, one says that they o
L are £-equal -{
For instance. the two terms t| = (2 + 3) and 1, = (3 + 2) are not considered as "equal” but as “e- -
A equal” because one needs 0 use the axiom of + commutanvity : -j
Yx ¥y ((x + y) = iy * x)]. I
_ i )
in order to recognize that ¢, =, 1. e
k': This defimtion may seem counter-intuitive but is it necessary to single out the use of axioms in the 1
r context of an automatic gereranen of generalizations because thetr use may lead to infinite computation 1
A loops ( using the axiom 10 one direcaon and then in the other one ). This kdnd of problems have been ;:1
ﬁ. very much studied. see for wstance [Suckel 1981], (Hsiang 1982]. Ky
. -
. -
Let =, denote g-equality. ;_;
A term ¢, is more general than a term ¢, in the theory ¢ iff there exist r,'=¢, and =1, and 2 o
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such that or,'=t,".

Depending on &, it may be that the above definition of ¢-generalization is not coasistent with its im-
plicit future use for definition an ( at least partial ) order. Usiag some of the properties ope may find 7’
and ;" such that #,=,¢," and r;=,%," and there is 2 o such that o,4'=ty".

Neventeless, it may well also be that, using other properties. one can find ¢, and " such that ¢, =.z,”
and ,=.5", aod there exists @, such that 04,"=1," even when 1%l (Kodratoff & Ganascia 1986].

Since we want to use the properties of the functions, and further define the gemerality of formulas
(therefore using the properties of our connectors) it is necessary to find a definiion of ¢ - generalization
that avoids this difficuity.

1.4.4 - Example of € - generalization (where atomic formulas are treated like terms)

Let us suppose that we work in a worid of objects which have a color and the the foilowing knowledge
is available
¥x 3y COLOR(y, x)

It states chat each object x has a color camed y. [n addition, RED is a kind of COLOR and this infor-
mation is supposed to be also known. This knowledge allows us to transform any atomic formula like
RED(x) into an instance of more geoeral atomic formula COLOR(RED. x).
Let us compare the generality of the concept "red square’ C, and “square” C,.

C, = SQUARE(x) & RED(x)

C, = SQUARE(x)

Applying the above theorem. one knows that for any x of C, . it has an unknown color , say y. There-
fore C; is equivalem 10 C," = SQUARE(x) & COLOR(y, x). Based on tbe fact that RED is more partic-
ular than COLOR, one caa find C,'=,C), C," = SQUARE(x) & COLOR(RED, x). Now, the usual term
definidion of generality can be applied since oC,'=C,” with & = (y & RED). Therefore C, is more gen-
eral than C in the theory which contains the above information

1.5 - Definition of Formuila Generalization modulo a theory

Let E| and E, be two formulas and € an equational theory.

1.5.1 - Generalized formuia

We say that formula £ is a generalization of formula £, if Condition | is fulfilled.

Condition 1 : there exists £," such that £," =, £, and there i 0, such that 0,&," =, E,.

This condition states thap there exists E,”, equivalent to £, and that £,’, considered as a term, is more
general than £, coasidered as a term.

The next defimtion gives an other condition which insures that formula generality is a partial ordering.
1.5.2 - Generality refation between two formulas.

We shall say that £, is more general than £, when Condinon | and Condition 2 are tfuifilled. Condi-
ton | 1s as above and

Condiuon 2 : For all E;‘ such that E!’ =, Ez N if there axists Gy such that U‘E»z' =, E\. then E‘!’ =2, El'

This second condinon states that the tirst condition can actually be used for ordering the formulas.
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It says that if tbere is a E,” which is equivalent to £, and which is more general ( as a term ) than £,
thea all three E|, £E,, E," must be equivalent.

Some theoretical consequences of condition 2 have been studied in (Kodratoff & Ganascia 1986] under
the name of i-implication.
We shail rather explain how one can make an algorithm out of definition 1.5.2.

One needs to find out the ransformed £, and £,, called £, and £, in the above definidoan We have
called thus work : Structural Matching [Kodratoff 1983].

1.6 - Structural Matching ( SM )

1.6.1 - Definition

Two formulas structurally match if they are identcal except for the constants and the vanables that -
More formaily : i

Let E, and E, be two formulas,

E, structuraily matches £, iff there cxists a C and there exist ¢ and &, such that

1- 6,C=£, and ¢,C=E, .
2- 6, and 3, never substitute a variable by a formula or a funcuon

It must be understood that SM may be difficuit up to undecidable. Nevertheless, in most cases. ope can
use the information coming from the other exampies, in order to know bow (0 orientaze the proofs
necessary to the application of this definition.

1.6.2 - SMizing two formulas

SM may well fail, whereas the etfects of the artempt to put o SM may suil be interestng.

We say that two formula have been SMixed when every possible property has been used in order to
put them into SM.

Whea the SM is a success. then SMizing is idenricai to pucting into SM.

When the SM is a failure, SMizing keeps the best possible result in the direcuon of matching formulas.

1.6.3 - A simpie exampie of ( successful ) Structural Matching

Consider the two following examples.

E, : \ E,: D

Using his intwnion. the reader may nonce that he can find wo differens generalizanons from these

examples.
He sees that either
- there are two different objects touching each aiher, and a smalil poivgon
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- there are two different objects touching each other, one of them is a square.
Both generalizadions are true and there is no reason why one of them should be chosen rather than the
other. We sh. il now see that one of the interesting features of SM is that it keeps all the available
informadion, and therefore constructs a formula containing both the above two "concepts”.

The examples can be described by the following formulas

E, = SQUARE(A) & CIRCLE(B) & ON(A, B) & SMALL(A) & BIG(B)
Ey = TRIANGLE(C) & SQUARE(D) & TOUCH(C, D) & SMALL(C) & BIG(D)

Let us suppose that the following hierarchy is provided to the system.

FORM
CONVEX \
—_— S
POLYGON ELLIPSOID
SQUARE TRIANGLE .. Cmé

together with the theorems
Yx ¥y (ON(x. y) => TOUCH(x. y)]
Yx Yy (TOUCH(x, y) > TOUCH(y, x)]

This taxonomy and the theorems represent our semanncal knowledge about the micro-world in which
leaming is taking place.

The SM of E, and E, proceeds by transforming them into equivalent formulas E,” and E,’, such dhat
E, is equivalent to £,, and E,’ is equivalent to&mttnsmxao-wodd(l.e.. taking into account its
semantics ).

When the process is completed, E,” and £, mmadeoftwopm.

One is 3 variabilized version of £, and E,. It is called the body of we SMized formulas. When SM
succeeds, the bodies of £,” and £, are identical.

The other part, called the bindings ( of the vanables ), gives all the conditions necessary for the body
of each £’ to be ideatical to the corresponding E,.

The algorithm that constructs E,” and E,’ is explained in {Kodratoff 1983, Kodratoff & Ganascia 1986,
Kodratoif & al 1984]. It hag been implemeanted several times under the name of AGAPE or MAGGY.

{n our example, it would find

Body of E\" =

POLYGON(u, y) & SQUARE(x) & CONVEX(v|, v4, 2) & OM(y, zj & TOUCH(y, )} & SMALL(y) &
BIG(z)

Bindings of E\" =

((x=y)&(ynz)& (x#2) & (v = ELLIPSOID) & (vy = CIRCLE) & (u = SQUARE) & (x = A) & (2
= 8))

BOdV Oszl -

POLYGON(u, y) & SQUARE(x) & CONVEX(v,, v5, 2} & TOUCHLy, :) & SMALL{y) & BIG{z)
Bindings of Ey" =

((x2y) &(y#z)&(x »2)& (v, » POLYGON) & (v+ = SQUARE) & (u =» TRIANGLE) & (x = D1 &

(y =C)
r
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The reader can check that E\" and E" are equivalens to E, and E..

E\" and Ey' conwain exacily the informarion extracted from the hierarchy and the theorems which is
necessary !0 put the examples into SM.

For instance. in E\", the expression * (POLYGON(u, y) ° means that there is a potygon in E,, and since
we nave the binding (u = SQUARE), it says that this polygon is a square, which is redundant in view
of the fact that SQUARE(x) & (x= y) s@ys that x is @ square and is the same as y. This redundancy is
not artificial when one considers the polygon in E, which is a TRIANGLE.

This example shows well that, once this SM step has been performed. the generalization step itseif
becomes trivial : we keep in the generalizaton ail the bindings common to the SMized formulas and
drop ail those not in common.

In other words, this SM technique allows (o reduce the well-known generalization rules [Michaiski
1983, 1984] 10 the only “dropping condition ruie” which becomes legal on SMized formulas. All the
indaction power is in the dropping condidon rule, all other rules are purely deductive. We must con-
fess that formal proof of the above statement is sull under research.

The generalization E, and E, is therefore

E,: POLYGOM(u.y) & SQUARE(x) & CONVEX(v,, v4, ) & TOUCH(y. =) & SMALL(y) & BIG(z)

with bindings (y = z).

In "English”, this formula means that there are two different objects ( named y and : ), y and = touck
each other, y is a small pofygon, = is a big convex. and there is a square ( named x ) which may be
identical ta y or =.

It can be easily guessed that using theorems can lead to many difficulties. since ope enters the realm
of Theorem Proving, which is well-known for being 2 good source of yet unsoived problems.

In the case of SM, ope is driven by the need to put the examples into a similar form. and the usual
difficuities of Therorem Proving are somewhat smoothered out. -

We cannot formally prove this point, but the following example. taken from [Vrain 1986] can at least
illustrate our claim.

L7 . Using theorems to improve gegeralizaton

Starting from two examples that have no common predicates, we show that they nevertheless have a
common generalizanon. found by using theorems that link the predicates.

Let the examplies be
E\ « MAMMALIAN(A) & BRED _ANIMAL(A)
E, « TAME(B) & VIVIPAROUS(B)

to which the following theorems are joined
Ry: "x [MAMMALIAN(x) & BRED _ANIMAL(x) => TAME(x)]
Ra: Yx [TAME(x) & VIVIPAROUS(x) => MAMMALIAN(x)|
Ry: Yx [TAME(x) = HARMLESS(x)]

The first step of SM is here mivial : we replace the constants by a variable x, and obtain the equivalent
examples :
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E\ = MAMMALIAN(x) & BRED_ANIMAL(x) [EQ(x, A)]
E»’ = TAME(x) & VIVIPAROUS(x) [EQ(x. B)]

Since the predicates have no common occurence, we consider the first ( this ordering is not significant,
and just follows the one in which the examples are given ) predicate of E" : MAMMALIAN. We see
that we can deduce this predicate from E., using the rule R,. We get:

E\” = MAMMALIANY(x) & BRED_ANIMAL(x) [EQ(x. A)]

E,” = TAME(x) & VIVIPAROUS(x) & MAMMALIAN**(x) [EQ(x, B}]

The MAMMALIAN of E\’ has been treated, this why it is marked by an * in £,”. The one of Ex” is
issued from the use of theorems, this is why it is marked by **.

Using again the order in which the examples are given, the next nonm-marked predicate is
BRED_ANIMAL.

— No rule can be applied 10 E,” 10 make explicit the presence of BRED _ANIMAL in it.

- Nevertheless, we remark that appiying the rule R, to E,\” uses the concerned predicate
BRED_ANIMAL. Checking the effect of this application, we see that it generates the atomic formula
TAME(x) and that there is an occurence of x in Ey” which mauwches this occurence. Therefore, we con-
clude that we must appiy R, w0 E,”.

One obuins
E\"" = MAMMALIAN®(x) & BRED _ANIMAL*(x) & TAME**(x) (EQ(x, A})]
Ey”: TAME™(x) & VIVIPAROUS(x) & MAMMALIAN**(x) [EQ(x. B}

Now, the only un-martched predicate is VIVIPAROUS in Ey”.

-- No rules can be appfied to E,"” to make its presence explicir.

— The only rule which can be applied in E,'”, relative to VIVIPAROUS is R,. But, it would introduce
the aromic formula MAMMALIAN(x), which is already matched since its instances are starred.

No other rule can be applied. we star the predicate VIVIPAROUS to remember that it has aiready

been dealt with, obtaining :
E\™ » MAMMALIAN*(x) & BRED_ANIMAL*(x) & TAME**(x) [EQ(x. A)]
E,™" = TAME*(x) & VIVIPAROUS*(x) & MAMMALIAN**(x} (EQ(x, 8)]

All possible occurences have been dealt with, a complete SM is not possible, therefore the SMizing
operanon stops here.

Now, the generalization step is wrtvial : one drops the non-common occurences, obtaining the generali-
zanon
G = TAME(x) & MAMMALIAN(x)

This example shows well how potential infinite proof loops can be easily avoided. sumply because they
do not improve the SMining state of the examples.

More geperally, one can use theorem proving techniques in order to improve the degree of simulanty
detected amoag the examples.

Such a system is under development in our group [Veain 1987]. It is not the concatenanion of a classi-
cal theorem prover and of generalizanon algonithms, but is rather swongly adapted to the land of proofs
required by Machine Learning.

As an ipstance of its peculiarity ( and of its incompleteness ), it will oot allow to use twice the same
theorem during 2 given denivanon. This is of course a crude way to avoid infimite ioops but, as the
above example show, the corresponding incompleteness is not so wide as ope could fear.
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2 . SYMBOLIC LEARNING IN A NOISY ENVIRONMENT

In the presence of noise or polymorphy, numeric techmques have proven their usefuiness. On this to-
pic. we want to stress two points.

! - applying numeric techniques too soon always spois the understandability of the results, and may
even hamper the efficiency.
2 - when used 1 proper dme, they become a2 wonderful tool.

Iz other words, we do oot criticize the use iself of numeric techmques, but their too early use.

The aim of this section is to show that one shouid. and this is possible, stick to symbolic techniques as
far as possibie before beginning to compute coedicients combinatioas.

This having been said. we are aiso quite comscious of the importance of a proper combination of the
coefficients. We are simply 1 it puzzied by the mge amount of research doue about coetficient combi-
nation, and the tny one dope to find when and wbere they must combine. More details on this last
pownt can be found in [Duval & Kodratoff 1986] in the case where ooe draws inferences from uncertain
or nowsy clauses.

Recently. and independandy, Michaiski {Michalska 1986] has introduced the idea of “"two-tiered con-
cept meaming” which is a close parent of the ones preseated here.

2.1 - Learning recognitica functions in Scene Analysis

Scene Analysis is very typical of 1 huge deveiopment of numerical techmiques and of what we shall
call, and Ty to prove to be. 3 “hidden” use of symbolic method.

2.1.1 - Domain Independant Scene Analysis

There is of course a need for methods to go from the pixel level tomelcvelofs;)medesaiptols(ﬁkc
segments, curvature changes, 2% ... ). Up to now. ail avalable metbods are purely numenc.

In our own research group. il symbolic leaming for scene analysis that has besn dooe, cither starts
from an already known symbolic description (Kodratoff & Lemerle-Loisel 1984] or from supposedly
goise-free puxe! descripnons {Caanat & Kodratotf 1986], [Cannar & al. 1986}
n order to fill up the gap berween real images and ideal ooes. we are presently using a pumerc
method due to (Mokhtarian & Mackworth 1986] which seems very pronusing.

This shows that we have followed a quite classical pattern : start from real pixei images, use oumencal
techmques to get a noise-free descripnon in terms of mgh level descniptors. use then symbolic methods
for ipterpreting these descriptors.

This approach to Scene Analysis seems to us justfied if. and oaly if. one is supposed to simulate a
system entering 1 brand-aew domain, and forced to discover all forms esach nme it sees them. The
metbods issued from this approach sbouid thes be domain independant.

2.1.1 - Domain Dependant Scene Analysis
Oun the contrary, when one is working in a speatic Jomain, coe is always. implicidy or explicaly (

our point is : too often implicidy ) using high level knowledge reladve to the domain. For instance. \f
some kind of curves are likely to appear, one will develop 2 special pixel-to-descniptor method to detect
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them. Besides, one will introduce special descriptors that will take into account some subtle differences
among those curves, that would be otherwise confused.

This is what we call "hidden use of symbolic methods”.

As an example of this undesirable feature, we shall self-criticize and cite [Kodratoff & Lemerie-Loisel
1984] where, for instance, the spadal relationships TOTHERIGHT among forms ( that are represented
by ctrcles ) are described as follows.

We define the horizontal strip associated to a circle ( respectively, its vertical strip ) by the porrion
of the plane which is between two horizontal ( resp. vertical ) parallels tangent to the circle.

We then define 6 different sorts of operators describing different ways o express ihat a circle stands
“to the right of ' an other circle.

For instance, TOTHERIGHT (A, B) says that circle A is actually directly above circle B, i.e. that the
center of A is inside the vertical strip of B. TOTHERIGHT \(A. B) says that the center of A is inside the
horizonsal strip of B, TOTHERIGHT(A, B) says that the center of A is owside both the horizonwl and
vertical stip of B, etc ...

A TOTEERICET = 0)B A(TOTHERIGE? + 1)B A( TOTUERICET = 2)D

8v defiming a stmp and using it 1n the operator defimnons, we { in a hidden symbolic way ) handle the
notse relanve 10 the posiaon of circle A when us center 15 approximasely on a verucal ( resp. honzontal
} line. since the precision with which our operator is defined includes the width of B. On the contrary,
when che center of A s around the limit of the strip. it becomes then extremely nouse sensuive since the
least difference may make decide that it is inside or outside the strip.

This describes a parnial handling of the nose. efficient 10 some situations, very poor in others, which is
que typical of hudden symbolic aoise handling, and gives its limuts.

Besides our own. most papers describing a specific application fail as well into the same trap.

We wnil not present here a compiete soluaon but simply underline that it can be of two different kinds.
1 - Qlassically, one can introduce rude force belief coetficients and assign a belief to each descnptor.

2 - As recommended here. one should try to keep available 1s much as possible of the symbolic wafor-
mation. Here. this symbolic informaton can be represeated by the fact that some operators are po-
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lymorphic and some others are not.

In our example, TOTHERIGHT(A. B) and TOTHERIGHT(A. B) are polymorphic since the center of A
can be near the limit of the strip of B, in which case the slightest error may make switch from one to
the other.

TOTHERIGHTA. B) and TOTHERIGHT (A, B) are not polymorphic when the two circle do not inter-
sect, they are when they intersect.

Polymorpity would then be a better way to treat noise than numeric coefficients since it allows to keep
more of the semanric of the domain.

In section 2.4 below we describe how polymorphy can even be used to retain most of the informanon
provided by Mitchell's version spaces.

22 . Learning noise-resistant recognition functions

Once more, we want to stress the point that coefficients of some sort are oot the exclusive solugon to
noise handling.
In this section. the geperalization issued from the examples will be seen as a recogmtion funcnon of
the axampies.

When notse is present in a data base, it often introduces some coatradictious in it.

We sinll stdy now the special case where these coutradictions are actualized by the fact that sets of
positive and pegative instances are oot disjoint. This case has been smded by (Fu & Buchanan 1985].
We present here a solution, first given in (Kodrawtf & al. 1986}, which is completely different from the
one given by (Fu & Buchanan 1985].

Suppose that one starts from a set of exampies {E} = (£,, ..., £,} 20d counter<xampies {CE} = [{CE,.
e CEL}.

Let G be a conjunctive generalization of {E} and let us suppose that some of the counter-exampies,
say the sub-set {CE’}, are recognized by G.

We shail use the following example, inspired by plant pathology rules (Kodratoff & al. 1986].
Let the positive examples be :

E, : (COLOR = RED) & (SIZE = VERY-BIG) & (TEXTURE = SOFT)

£, (COLOR = GREEN) & (SIZE = BIG; & jTEXTURE = HARD)

Ey : (COLOR = GREEN) & (SIZE = VERY-BIG) & (TEXTURE =~ HARD)

and let a counter-example be :
CE, : (COLOR = RED) & (SIZE = BIG) & (TEXTURE = HARD)

Supposing that we know that BIG and VERY-BIG can generalize to LARGE. a comyuncnve generaliza-
nion of (E\. Es. £y} i3
G : (COLOR = ANY) & (SIZE = LARGE) & (TEXTURE = ANY)

This generalizanon s also a recogmtion funcnon when one says that it recognizes s instances.
Unfortunately. it recogrizes also CE, which s one of its instances.

We suggest to reat this aose effect by parnnonmng (£, ... £,} i two.
Let (E'} = (£, ... E,} and {E"} = (E,,,, ... E.} be two disjount subsets of {E}. Let G’ and G" be
generalizaaoas of {E'} and {E”} such that G* v G” does not recogmze {CE’).
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Let (E'} = {E\, B} and |E"} = E,.

G = (COLOR = ANY) & (SIZE = VERY-BIG) & (TEXTURE = ANY)
G" = E,.

The dispunction G' v G” does not recognize CE.

Therefore. we have solved our initial problem of recogniton of counter-examples by a generalization
of the examples.

This solunon. which seems to be a littie artificial. allows also to favor noise-resistant generalizations.
This foliows from the fact that there are usuaily many different particons of |E} that will generate dis-
junctuve generalizatons rejecting the counter-examples.

Let (E'} = (E,. E;} and {E"} = E,. This parnition generates an other disjunctive generalization that
rejects CE, namely :

GG = (COLOR = GREEN) & (SIZE = LARGE) & (TEXTURE = HARD)

GG" - E[.

and GG' v GG" rejects CE.

On the corwrary, the last paration., {E'} = (E,, E,} and {E"} = E, generates the generailization G v
E;. which of course recognizes CE.

Let {Gy', ... G¢'] be the set of such disjunctive generalizagons.
In our example, G" = G v G", Gy = GG v GG".

Some of the descriptors, out of which the generalizatons are made, may be more or less noise-
resistant.

One will choose in this set the generalization that is the most noise resistant, as shown by the two fol-
lowing rules. Both of them rely on the fact that one can discrinunate the noise resistance of the desaxip-
tors.

In owr example, we consider only the noise issued from descriptor polymorphy, and foilow evervday in-
tuation. Let us accept that there is no polymorpiy berween RED and GREEN, some between HARD and
SOFT. and much between BIG and VERY-BIG. It follows that we consider that the colors are not noisy,
the texture somewhar noisy, and the sizes very noisy.

Ruie-1 ( purely symbolic ).
For each G, consider the set of descriptors that discriminate {E} against {CE}. They are the important

descriptors that contan the fearures typical to (E}, and atypical to {CE}.
Rule-1 is then : choose the G;" whose discriminant descriptors are the most noise-resistant.

s AT

In G : [(G' = {COLOR = ANY) & (SIZE « VERY-BIG) & (TEXTURE = ANY)) v (G" = Ey]. G’
rejects CE because of the descrptor SIZE. and G~ rejects CE because of the descriptor COLOR.

In Gy : (GG" = (COLOR = GREEN) & (SIZE = LARGE) & (TEXTURE = HARD)) v (GG~ = E\)].
GG’ rejects CE because of the descrtiptor COLOR and GG~ rejects CE because of the descriptors SIZE
and TEXTURE

It follows that G+’ uses more noise-resistant descriptors. since the SIZE used in GG" is helped by a
supplementary difference in TEXTURE.

Rule-! wouid lead us to choose Gy as correct. noise-resistant, disjunctive generalization.
Rules2 ( purely mumeric ).

[t may bappen that Rule-l is not operanve because the disjuncuve geperalizations use ihe same
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descriptors.
Imagine. in our example, that TEXTURE does not appear in G-’

Let G/’ and G;* be two disjunctive generalizations thas cannot be ordered by Rule-1.

As we bave already seen in our example, different discriminating descriptors are issued from the
different clusters where the generalisations come from.

Call {{£'}, [E}} the partition of (E} which generates G;" and call {(E,’}, (E;”}} the partition of (E}
wiich generates G;'.

Let us call P’ the descriptor, common to (£} and (£;”}, that disciminates {E} from {CE}, and call
P the descriptor, commoan to {E,”} and [E;'}. that disciminates (E} from {CE}.

For the sake of clarity, suppose further that P’ is less noisy than P”. and that
{E/} and {E;"} countain more elements than (£} and {E,'}.

Then P’ is less ooisy than P”, and it is issued from a stanstically more significam subset of examples.

Rule-2 is : whepever possible, choose the disjunctive generalizaton that makes use of discriminant
descriptors that are both the most statisucally sigmficant and the less noise-seasitive.

Imagine. in our example. that TEXTURE does not appear in G.'. the wo disjurctive generalizations
wouid then use the same set of descriptors.

In G\, the more noisy descriptor, SIZE, is the one which is issued from E, and E,. It does not fit the
conditions of Rule-2.

In Gy, the less noisy descriptor, COLOR, is issued from E, and E,. This gives us a second reason for
choosing Gy’ as noise-resistant disjunctive generalization.

The above technique allows to combine acumeric data about the aumber of examples covered by a
description, oumeric or symbolic data about the noise associated to each descriptor, and symbolic data
about disjunctive generalizatons.

2.3 - Learning noise-resistant strategies

When a sequence of commutative operagors has to be applied to ichieve a goal, it is a marwer of stra-
tegy to decide in which order the operators must be applied.

Similarly, the classical "contlict resolution” of the System Experts is nothing but a strateqcal choice
about what is the operator to apply aext, when several are available.

This problem can be illustrated by the foilowing example, taken from [Bisseret & Girard 1973]. It
simulates the conwrols necessary when two planes are exifing an air-tragfic sector. There are two
conflicting flights. and the problem is t0 find which must change its flight profile.

One can ask as first question wether Flight-l must be lowered 0 exit sector. A part of the decision
tree is then :
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Flighe-1 lowered 10 exit sector? 1

, / N ]
P

Flight-2 :read‘v and level? Only Flight-2 steady and level ?
Flight-1 changes profile Flight-2 able to become Flight-1 changes profile

steady and level?

N

- } Flight-2 changes projile Flight-1 changes profile

One can also ask first wether Flight-2 is steady and level. A part of the corresponding decision tree is
then the following.

Flight-2 steady and levei?

a7 V \

Flight-1 lowered 10 exit seccor? Flight-1 steadyv and level?

2N L N

Flighs.{ changes propile Flight-1 steady and level? Flight-l lowered to exit sector?

27NN

Flight-1 changes profile  .". . Flight-2 changes propile

The choice berween these two strategies. so claum the specialists in air-tragfic control. is not due to ary
noise ( and so we hope ! ), but to an estimation of the complexity of the exact caiculations in each

\
N
‘.‘:
.
~

l..

’ case.
Form our Al point of view, noise and calculaaion complexity can well be confused.

2y
:- As the ibove exampie shows, depending of the compuranon complexity. or onoise, relanve to the
5 answer t0 Flight-2 steady and level?, it is wise or not 10 ask it as first question.
-
N More genenlly, it is quite evident that szategies should be idapted to the noise of the descriptors they
1 use. The less aoisy descriptors should be used as eardy 13 possible, and the most noisy ooes, as late as
- possible.
Before discussing some solutions to the problem of the obtainment of these strategies, let us first point
. out that. agan, 1 ‘pure” symbolic problem, viz. the obtanement of vanable strategies, is one of the
» soludons to noise handling.
i How to obtain sets of strategies?
r
[ 4
; 1 - From Human Experts.
:
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The above strategies for Sights exiting a sector was direcdy given by the expert.

More generally, our experience shows that human experts quite dislike providing rules, which they are
almost exclusively asked. and just love providing strategies, which they are not asked.

This is why we have devised a system called DISCIPLE [Kodratoff & Tecuci 1986a, (986b] which is
oriented towards the leaming of strategies on the conditions in which rules must be applied.

In this system. the rules must be given, at least in an instanuated form, and cooditions for their appli-
canons are learned through a conversatonal interaction with an expert.

The system “guesses” the conditon of application of a ruie. then. from its data basis, it applies the
guessed condition to its knowledge. [t therefore proposes instantiated rules to the expert. When the ex-
pent accepts them, the conditoas of application are confirmed and accordingly geperalized, when the
expert rejects them, the condition of application are accordingly particularized.

2 - Automatic generation of strategies

e e When ooe generates automadcally recogmuon funcuons. they can be, as dooe by [Michalsia & Chi-
) lansic 1980}, [Micbalsii & al 1982) used as condinons for rule applicanon.

In these references. it is very clear that large rules. concluding to an action trom a large set of coadi-
tons. are looked for. [t could be very useful to look for intermediary clusters of examples and
counter-exampies that could provide imermediary ruies, as for instance dooe by (Fu & Buchanan 1985].

o In this way. which merges automanc generation of recogmion functions and conceptual clustering, it
could be quite possible to generate automancally sets of possible strategies, that could be used to be
adapted to the noise conditon w each particular applicanon.

2.4 - Polymorphic Version Space

The nodon of Version Space bas been inroduced by T. Mitcheil [Mitchell 1982} who descnibes it as a
set of possible generalizaron siates. Let us recall bredy Mitcheil’s resuits.

QOne generalizes from the examples, and the subset of “maximally specific generalizations” obtained by
generalizanon from the exampies is called the S-set. In this paper. we shall use the extenmon of
Mitchell's ideas due to Utgoff [Utgotf 1986}, ind suppose that intermediary coocepts ( called "bias” by
Utgoff ) are always avalable.

Qoe particulanzes from counter-examples, and the subset of “maximally geperal generalizanons” ob-
tained from the counter-exemples is called the G-set.

In order 1o tlluserate it, let us use the following example, from [Mitchell, Utgoff & Baner;i 1983].
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POLY
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TRIG
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SIN/ Cos\
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.
"

If the examples are instances of SIN and COS. then the S-set 1s made of ail the sons of TRIG by foi-
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lowing Mitchell. while Utgoff allows us 10 suppose that there is always some intermediary concept ( let
us call it here : SIN v COS ) that makes the S-set nearer (o the examples.

If the counter-examples are instances of POLY. then the G-set is made of the sons of TRANS.
A first order logic presentation of Mitcheil's ideas wll allow us to discuss theiwr geperalizanon to noisy
data.

Let P be the first order logic predicates that expresses the success of acaon done is the situanon A,.

In the above example, imagine that one is concerned with symbolic integradon, and that one disposes
of a set of possible operators, among them, an operator of iategranon by paris :

OPg:J’udvr-uv-j‘Vdu.
Then A, = [Funcnonal part of dv = SIN], and P = [Success of [ntegranon by Parts by applying OP-/.
For :he sake of brevity, we leave impiictt in the rest :his secnon that the [ntegranon by Parts is always
done by using OP,.
Let (A} be the set of the sicuations that insure success dunng the Tauning phase. then each A; is such

that 4, =0 P. Therefore. each A; 1s a sutficient conditon for the validity of P.
The S-set ( with the bias extension ) 8 theretfore a set of sutficent condinoas for 1 success.

Funcaonal part of dv = SIN is a suffictent condition for the integration by part to succeed, Furcaoral
part of dv = COS aiso.

Let {A;} be the set of the actions that wsure fulure dunng the Tumng phase. and let {CA;} the com-
piementary set 10 (A;} . The set {CA:} is the G-set for the value of u 1n the lnegranon by Parts.

Otberwise stated. zivet; |A;}, one mes 0 find an other subset {CA,} such that, for each 1,

) A; @ —CA;
Since each 4; is a fadure. it 13 such that
A = =P
[t mwially follows that
P = CA,

Therefore. each Cd, is 1 oecessary coodition for the validity of P. The G-set is therefore a set of neces-
sary condigoons for 1 success.

Consider the above hierarchy. Since POLY und TRANS ure '‘wo nifferent sons of the same rather. one
knows that. in weil-hehgved :axonomies. they exclude eacn dther. 1.¢. that POLY <> —TRANS.

Since POLY 15 a counter-example 10 the success of the integranon by parts with Funcronal part of dv
= POLY. the G-set of the integranon bv part is Funcnionai part of dv = TRANS and its sons.

{n greater detatls, one can se¢ that
[Funcnonai part of dv = POLY] =» —{success of [ntegration sy Partsf.

Because of the raxononmty, one has
POLY <= —TRANS.

Using the classical fact :hat
A = 3 s equuvalent 1o -A v 8.

one has
== [Funcnonal part of &v = TRANS|] v —(success of [ntegranon by Parts]
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wnich s equivalent to

[Funcnonal part of dv = TRANS| v —(success of Integration by Parts]
and. therefore, (0

[success of Integration by Parts] => (Functionai part of dv = TRANS].

Tbe interest of this small theoretization lies in the fact that it gives the main two hypotbesis under
which Vers:oa Spaces are tractable.

On the one hand. one must have ——A = A, i.e.. ope must not use ionutiomsnc logics. This restncton
is pot so soong I prachce.

Nevertheiess. the following example will show that one must be careful while using segadon ia 2 rea-
somng step.

Suppose thar one :s working with red, green, and blue colors.

Let r be a parucular red color. Then a possible neganon of this red color. —r, may be a parncular
green color. say g. Now, possible neganons of g are of couwrse r, bus also anmy other color which not
green, for example a parncular blue, b.

{n that case, ——r may take the value b insiead of r as one could expect.

One has :0 suppose that a special care is wken for racking the origin of the negations when double
neganon is applied. in order to insure che validity of classical logics.

On the other hand, in order 10 bwld the G-set. ope must Gnd counter-exampies. A., that exclude some
Rt other predicates. i.e. such that A. <w ~CA..

' [n this case. coocept polymorphy, ie. the fact that concepts are oot always disjoint, will prevem an
easy building of the G-set.

We shall illustrate now our clazms with concepts of colors. which clearty are parually polymorphic.
For instance. red and rose are polymorphic. because some of their insiances may be confused, but red
and green are not.

N e mes

The colors are then not represented by a unique pownt 1n g state space, but by a set of the possible
instances of each color.

One wall have to comstruct 1 taxonomic-like tree. similar to the one of the Version Space. Many more
links, indicanng a parnal poiymorphy will have to be added to the taxonomy. Coerficients can be asso-
clated to each link. indicanag how much important the polymorphy is. We insist that the existence of
coefficents. and the way they ire combined, is not the man issue. On the conmary, the main issue is to
sea keep track of the successive steps of reasoning, in order to be able to provide explananion to the user.
Thus last pownt has been explaned in [Duval & Kodratotf 1986] in the context of uncertain reasoqing.

Consider the following taxonomy for colors, and the assoctated links of polymorpiy. No hortzonial link
benween two concepts means no polymorpiuc links,

Strong polymorphy 15 marked by a mere contusion of concepts as brown below. Medium polymorphy is
marked by a horizonwal line of - . Small polvmorphy is marked by a horizonal line of * . dk stands for
dark, gt for light.
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primary secondary

VAN N
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dk <***> lgr dk <***> [gr gt lge dk <***> [g¢ dk <***> [gr
(brown)

gt <***> gk
{chestnut) (brown)

It is generally understood that, for instance, primary and secondary colors cannot be confused, i.e. that
primary <= -—secondary. This is why there s no horizonul line berween primary and secondary.
Nevertheless. polymorphy of their sons will induce some ( implicit ) polymorphy berween them.

e WAt et When a counter-example is given, one will have to check which predicams can be tuly coamsidered as

oA behaving classically, i.e. tbey have ao polymorphy with the counter-example predicate. One will have
- SR also to keep track of partial polymorphy that teils that they are pardally only rejected by the counter-
A g 5 M St example.

Suppose that the gbove taxonomy is used (o allow or reject some action P. and that the color light red
is a counter-example : light red => —P.
The construction of the G-set will proceed as foilows.

o S i v ey

Let us first suppose that "first generation” polymorphy only is considered.
Light red is a primary color. polymorphic with some secondary colors. namely purpie light and orange
light. It follows thar the G-set contains all secondary colors, except these two. ds in the figure below.

color

Let us now take also into account the fact that “second generanon polymorphy" can also be important.
Light red is also feebly polymorphic with dark red which, in turn. is polymorphic with dark purple and
dark orange.

Therefore. dark purple and dark orange must be also excluded of the G-set. but with much less
strength than their light counterparts.
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Now, and only now, some way of combining coefficients will be necessary to have a correct modelling
of the necessary knowledge.

In Mitchell’s Version Space. the G-set is a one-dimensional ennity since one poiot, the node where it
starts. is necessary.

If no combination of polymorphy is allowed, a rwo dimensional G-set must be used. in order to tell
which predicates are excluded from it. as seen in the above figure.

If one allows combinations of polymorphy coefficients, a three dimensional G-set becomes aecessary.
The third dimension tells the intensity with which the predicates belong to the G-set

R It Rl

The same kind of work can be done for the the S-set. Oae will obtain in a simular way 3 three dimen-
sional Version Space.

. One knows that the S-set and the G-set must coincide in order to obtain hat we cail here : necessary
- and sutficient conditions for the application of the ruies.
In the case of polymorpmc Version Space. the same 15 que. but the coincidence can be approximate
e only, a0d must hoid between complicated shapes.

In geperal. the G-set and the S-set wall oot cowncide but simply intersect. [n most cases, one will have
even nothing but informanon about the likeliness of tus intersecnon.

Therefore, the global information about aoise or polymorphy wall not be totally contained m belief
coeffictents only.

Numeric coefficients are of course oecessary (0 coovey the informanion about the likeliness of the
intersectuon, but ooe must be aware that it would be wrong to forget the essennal informanon conveyed
by our extension of the Version Spaces. which can be descnibed as foilows.

Let P, be a predicate belonging to the G-set oaly, P, be a predicare belonging to the S-set oaly, and
(P, P.] be the set of predicates that are sons of P, and fathers of P,.

Then. the exact generalizanon state 1s unknown. but beiongs to [P.. P,].

This last semeence is 2 way of Jdescnibing uncertainty by a purety symboiic method which could never
have been imagined without Miwchell’s ocise-iree Version Spaces.

- e (e

CONCLUSION

[n a recent paper. we claim thar Al is ot 1 sub-deld of Computer Science. but 2 oew Science by itself
[Kodratotf 1986b], independant trom us parents Mathemancs, Logics. and of course Computer Science.

We shall simply recall here our main argument . Al has s seif well-idenufied fieid of research.
namely the defimton. measurement and appiicatons of expiananons given 10 the own [apguage oOf is
user. [n other words, whule all other Sciences provide explanatnons wa thewr own language ( very often
they are even able 10 become rather esotenic ! ), the topic of Al is t0 reach a point where it can provide
explananons ia the own language of the user of Al

We do not want 0 argue this point here. but would rather oy to show that the rest of tus paper. 10 1

perhaps wndirect way. tnes 0 help actueving ttus goal. Even 1f the reader disagree wnth our posinon that
Al is the science of explananons. be can sall discuss our pownt that a berter defimtion of generalizanon
( secton | of this paper ) and 1 systemanc use of symbolic techmques ( secuoa 2 of this paper ) are
good tools to achueve a betwer explicauveoess of Al systems.
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About section 1, one may well wonder what its content may have to do with explicableness, since it
looks like theoretical discussions about a formal detininon of geperalizanon. Of course, ope can argue
in a very abstract way that better definitions always lead to berer understandability. In the case of gen-
eralizatioq., it is by itseif a kind of explananon of why are the examples sunular. Refimng geperalization
may help to remember some hidden common feature which can be an explananon. Counter-examples
will be necessary to decide what is and what is pot an explanation.

s.gov

s
[

A A

Recall the examples of secnon 1.7, E, = MAMMALIAN(A) & BRED_ANIMAL(A), E, = TAME(B) &
VIVIPAROUS(B). from which we could find the generalizanon G = TAME(x) & MAMMALIANIx).

Suppose now that a counter-example to G is CE = DANGERQUS(LION-1). From it, we can now tell
that eventhough ( implicitly ) present in both examples, MAMMALIAN and TAME are not the z00d
explanation of the link between the examples. One has to use Ry: ¥x [TAME(x) => HARMLESS(x)], and

LL R some knowledge of the kind Nx ([DANGERQUS(x) = —HARMLESS(x1]. 10 be able to explain that this
oI examples are abous harmiess animals. Withow introducing TAME in E,, by the use of R,, one would
L g wm have been unable to find this explanarion.

Our refinements to generalization are not explanatory by themselves. but they may allow to start expla-
0ALOry PrOCEsSes.

About sectioa 2, its content is much more evidently linked to explicableness. Symbolic techmiques
keep the kand of informaton that provides expiananons while numenc ones ( and especially coefficient
combinations ) do not

s __' _ As an example. consider the LEX system which is capable of carrying owt formal integrasions
TR e [Mirtchell. Utgoff & Banerji 1983]. As seen in section 2.4, the learming part of LEX as been rying to

e make identical ihe G-set and the S-set of " u ' and ' dv ' in integranon by parts. Suppose thar it suc- h
e e ceeded by finding that these common G-and-S-sets are ’ polynomial * for ' u * and ' wigonomerric ' for g_:
o - .

~

Suppose now the system is asked 0 integrate 3x cos x dx and that it chooses to integrate v parts
with u = 3x and dv = cos x dx.

It is, at least in principle, capable of explananons in the sense that, it is capable, when asked the ques-
tion: “Why have you chosen this way of integratng?”, of giving the answer: "Because | had the option
of choosing a ' u ' which is a polynomial and a * av * whose funcrional part is a ingonomemc func-
tion.

ol At S ]
e

Yy

v v
1

:_ L _.;,.,, N The symbolic handling of knowledge about necessary and sufficient conditions makes possible this
o T kind of explanation.

As g dnd of counter-example, imagine that it couid be quite possible to achieve also very good results
in symbolic integrarion by asserang coefficients 10 the possible ' u ' and * dv ' in integranion by part,
and learming by increasing the coefficents in case of success, and decreasing them in case of failure. No
explananons can been given from this kind of learning.
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